Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611070

RESUMO

The preparation and implementation of interdisciplinary oncological case reviews are time-consuming and complex. The variety of clinical and radiological information must be presented in a clear and comprehensible manner. Only if all relevant patient-specific information is demonstrated in a short time frame can well-founded treatment decisions be made on this basis. Mixed reality (MR) technology as a multimodal interactive user interface could enhance understanding in multidisciplinary collaboration by visualising radiological or clinical data. The aim of the work was to develop an MR-based software prototype for a head and neck tumour board (HNTB) to support clinical decision-making. The article describes the development phases and workflows in the planning and creation of a MR-based software prototype that were required to meet the multidisciplinary characteristics of a HNTB.

2.
Neurosurg Focus ; 56(1): E12, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163360

RESUMO

OBJECTIVE: Learning surgical skills is an essential part of neurosurgical training. Ideally, these skills are acquired to a sufficient extent in an ex vivo setting. The authors previously described an in vitro brain tumor model, consisting of a cadaveric animal brain injected with fluorescent agar-agar, for acquiring a wide range of basic neuro-oncological skills. This model focused on haptic skills such as safe tissue ablation technique and the training of fluorescence-based resection. As important didactical technologies such as mixed reality and 3D printing become more readily available, the authors developed a readily available training model that integrates the haptic aspects into a mixed reality setup. METHODS: The anatomical structures of a brain tumor patient were segmented from medical imaging data to create a digital twin of the case. Bony structures were 3D printed and combined with the in vitro brain tumor model. The segmented structures were visualized in mixed reality headsets, and the congruence of the printed and the virtual objects allowed them to be spatially superimposed. In this way, users of the system were able to train on the entire treatment process from surgery planning to instrument preparation and execution of the surgery. RESULTS: Mixed reality visualization in the joint model facilitated model (patient) positioning as well as craniotomy and the extent of resection planning respecting case-dependent specifications. The advanced physical model allowed brain tumor surgery training including skin incision; craniotomy; dural opening; fluorescence-guided tumor resection; and dura, bone, and skin closure. CONCLUSIONS: Combining mixed reality visualization with the corresponding 3D printed physical hands-on model allowed advanced training of sequential brain tumor resection skills. Three-dimensional printing technology facilitates the production of a precise, reproducible, and worldwide accessible brain tumor surgery model. The described model for brain tumor resection advanced regarding important aspects of skills training for neurosurgical residents (e.g., locating the lesion, head position planning, skull trepanation, dura opening, tissue ablation techniques, fluorescence-guided resection, and closure). Mixed reality enriches the model with important structures that are difficult to model (e.g., vessels and fiber tracts) and advanced interaction concepts (e.g., craniotomy simulations). Finally, this concept demonstrates a bridging technology toward intraoperative application of mixed reality.


Assuntos
Realidade Aumentada , Neoplasias Encefálicas , Humanos , Ágar , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Impressão Tridimensional , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia
3.
J Pers Med ; 13(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138936

RESUMO

Orthognathic surgery plays a vital role in correcting various skeletal discrepancies of the maxillofacial region. Achieving optimal occlusion is a fundamental aspect of orthognathic surgery planning, as it directly influences postoperative outcomes and patient satisfaction. Traditional methods for setting final occlusion involve the use of dental casts which are time-consuming, prone to errors and cannot be easily shared among collaborating specialties. In recent years, advancements in digital technology have introduced innovative approaches, such as virtual occlusion, which may offer enhanced accuracy and efficiency in orthognathic surgery planning. Furthermore, the emergence of mixed reality devices and their 3D visualization capabilities have brought about novel benefits in the medical field, particularly in computer-assisted planning. This paper presents for the first time a prototype tool for setting virtual occlusion during orthognathic surgery planning using mixed reality technology. A complete walkthrough of the workflow is presented including an explanation of the implicit advantages of this novel tool. The new approach to defining virtual occlusion is set into context with other published methods of virtual occlusion setting, discussing advantages and limitations as well as concepts of surgical occlusion for orthognathic surgery.

4.
MAGMA ; 36(1): 107-118, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36053432

RESUMO

OBJECTIVE: It is well known that the use of shift reagents (SRs) in nuclear magnetic resonance (NMR) studies is substantially limited by an intact blood-brain barrier (BBB). The current study aims to develop a method enabling chemical shift imaging in the living rat brain under physiological conditions using an SR, Tm[DOTP]5-. MATERIALS AND METHODS: Hyperosmotic mannitol bolus injection followed by 60 min infusion of a Tm[DOTP]5- containing solution was administered via a catheter inserted into an internal carotid artery. We monitored the homeostasis of physiological parameters, and we measured the thulium content in brain tissue post mortem using total reflection fluorescence spectroscopy (T-XRF). The alterations of the 23Na resonance spectrum were followed in a 9.4T small animal scanner. RESULTS: Based on the T-XRF measurements, the thulium concentration was estimated at 2.3 ± 1.8 mM in the brain interstitial space. Spectroscopic imaging showed a split of the 23Na resonance peak which became visible 20 min after starting the infusion. Chemical shift imaging revealed a significant decrease of the initial intensity level to 0.915 ± 0.058 at the end of infusion. CONCLUSION: Our novel protocol showed bulk accumulation of Tm[DOTP]5- thus enabling separation of the extra-/intracellular 23Na signal components in the living rat brain while maintaining physiological homeostasis.


Assuntos
Imageamento por Ressonância Magnética , Túlio , Ratos , Animais , Espectroscopia de Ressonância Magnética/métodos , Sódio , Encéfalo/diagnóstico por imagem
5.
Magn Reson Med ; 85(1): 531-543, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32857424

RESUMO

PURPOSE: To describe and implement a strategy for dynamic slice-by-slice and multiband B0 shimming using spherical harmonic shims in the human brain at 7T. THEORY: For thin axial slices, spherical harmonic shims can be divided into pairs of shims (z-degenerate and non-z-degenerate) that are spatially degenerate, such that only ½ of the shims (non-z-degenerate) are required for single slice optimizations. However, when combined, the pairs of shims can be used to simultaneously generate the same in-plane symmetries but with different amplitudes as a function of their z location. This enables multiband shimming equivalent to that achievable by single slice-by-slice optimization. METHODS: All data were acquired at 7T using a spherical harmonic shim insert enabling shimming up through 4th order with two additional 5th order shims (1st-4th+). Dynamic shim updating was achieved using a 10A shim power supply with 2 ms ramps and constrained optimizations to minimize eddy currents. RESULTS: In groups of eight subjects, we demonstrated that: 1) dynamic updating using 1st-4th+ order shims reduced the SD of the B0 field over the whole brain from 32.4 ± 2.6 and 24.9 ± 2 Hz with 1st-2nd and 1st-4th+ static global shimming to 15.1 ± 1.7 Hz; 2) near equivalent performance was achieved when dynamically updating only the non-z-degenerate shims (14.3 ± 1.5 Hz), or when a using multiband shim factor of 2, MBs = 2, and all shims (14.4 ± 2.0 Hz). CONCLUSION: High order spherical harmonics provide substantial improvements over static global shimming and enable dynamic multiband shimming with near equivalent performance to that of dynamic slice-by-slice shimming. This reduces distortion in echo planar imaging.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imagem Ecoplanar , Humanos
6.
Magn Reson Med ; 85(5): 2892-2903, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33200403

RESUMO

PURPOSE: To propose two innovations to existing eddy current characterization techniques, which include (1) an efficient spatio-temporal sampling scheme and (2) a model-based fitting of spherical harmonic eddy current components. THEORY AND METHODS: This work introduces a three-plane 2D image-based acquisition scheme to efficiently sample eddy current fields. Additionally, a model-based spherical harmonic decomposition is presented, which reduces fitting noise using a rank minimization to impose an exponential decay on the eddy current amplitude evolution. Both techniques are applied in combination and analyzed in simulations for their applicability in reconstructing suitable pre-emphasis parameters. In a proof-of-concept measurement, the routine is tested for its propriety to correctly quantify user-defined field dynamics. Furthermore, based on acquired precompensation and postcompensation eddy current data, the suitability of pre-emphasis parameters calculated based on the proposed technique is evaluated. RESULTS: Simulation results derived from 500 data sets demonstrate the applicability of the acquisition scheme for the spatio-temporal sampling of eddy current fields. Compared with a conventional data processing strategy, the proposed model-based approach yields pre-emphasis parameters that reduce the average maximum residual field offset within a 10-cm-diameter spherical volume from 3.17 Hz to 0.58 Hz. Experimental data prove the proposed routine to be suitable to measure and effectively compensate for eddy currents within 10 minutes of acquisition time. CONCLUSION: The proposed framework was found to be well-suited to efficiently characterize and compensate for eddy current fields in a one-time calibration effort. It can be applied to facilitate pre-emphasis implementations, such as for dynamic B0 shimming applications.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo , Calibragem , Simulação por Computador
7.
Magn Reson Med ; 82(1): 263-275, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883909

RESUMO

PURPOSE: To overcome existing challenges in dynamic B0 shimming by implementing a shim optimization algorithm which limits shim current amplitudes and their temporal variation through the application of constraints and regularization terms. THEORY AND METHODS: Spherical harmonic dynamic B0 shimming is complicated by eddy currents, ill-posed optimizations, and the need for strong power supplies. Based on the fact that eddy current amplitudes are proportional to the magnitude of the shim current changes, and assuming a smoothness of the B0 inhomogeneity variation in the slice direction, a novel algorithm was implemented to reduce eddy current generation by limiting interslice shim current changes. Shim degeneracy issues and resulting high current amplitudes are additionally addressed by penalizing high solution norms. Applicability of the proposed algorithm was validated in simulations and in phantom and in vivo measurements. RESULTS: High-order dynamic shimming simulations and measurements have shown that absolute shim current amplitudes and their temporal variation can be substantially reduced with negligible loss in achievable B0 homogeneity. Whereas conventional dynamic shim updating optimizations improve the B0 homogeneity, on average, by a factor of 2.1 over second-order static solutions, our proposed routine reached a factor of 2.0, while simultaneously providing a 14-fold reduction of the average maximum shim current changes. CONCLUSIONS: The proposed algorithm substantially reduces the shim amplitudes and their temporal variation, while only marginally affecting the achievable B0  homogeneity. As a result, it has the potential to mitigate the remaining challenges in dynamic B0 shimming and help in making its application more readily available.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Campos Eletromagnéticos , Humanos , Imagens de Fantasmas
8.
Z Med Phys ; 26(3): 259-69, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27157275

RESUMO

Minimally invasive interventions are frequently aided by 2D projective image guidance. To facilitate the navigation of medical tools within the patient, information from preoperative 3D images can supplement interventional data. This work describes a novel approach to perform a 3D CT data registration to a single interventional native fluoroscopic frame. The goal of this procedure is to recover and visualize a current 2D interventional tool position in its corresponding 3D dataset. A dedicated routine was developed and tested on a phantom. The 3D position of a guidewire inserted into the phantom could successfully be reconstructed for varying 2D image acquisition geometries. The scope of the routine includes projecting the CT data into the plane of the fluoroscopy. A subsequent registration of the real and virtual projections is performed with an accuracy within the range of 1.16±0.17mm for fixed landmarks. The interventional tool is extracted from the fluoroscopy and matched to the corresponding part of the projected and transformed arterial vasculature. A root mean square error of up to 0.56mm for matched point pairs is reached. The desired 3D view is provided by backprojecting the matched guidewire through the CT array. Due to its potential to reduce patient dose and treatment times, the proposed routine has the capability of reducing patient stress at lower overall treatment costs.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Imageamento Tridimensional/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Radiografia Intervencionista/métodos , Técnica de Subtração , Procedimentos Cirúrgicos Vasculares/métodos , Pontos de Referência Anatômicos/diagnóstico por imagem , Angiografia por Tomografia Computadorizada/instrumentação , Marcadores Fiduciais , Fluoroscopia/instrumentação , Fluoroscopia/métodos , Humanos , Imagens de Fantasmas , Radiografia Intervencionista/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Invest Radiol ; 49(5): 260-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24651662

RESUMO

OBJECTIVES: This study was designed to examine the feasibility of ophthalmic magnetic resonance imaging (MRI) at 7 T using a local 6-channel transmit/receive radiofrequency (RF) coil array in healthy volunteers and patients with intraocular masses. MATERIALS AND METHODS: A novel 6-element transceiver RF coil array that makes uses of loop elements and that is customized for eye imaging at 7 T is proposed. Considerations influencing the RF coil design and the characteristics of the proposed RF coil array are presented. Numerical electromagnetic field simulations were conducted to enhance the RF coil characteristics. Specific absorption rate simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Phantom experiments were carried out to validate the electromagnetic field simulations and to assess the real performance of the proposed transceiver array. Certified approval for clinical studies was provided by a local notified body before the in vivo studies. The suitability of the RF coil to image the human eye, optical nerve, and orbit was examined in an in vivo feasibility study including (a) 3-dimensional (3D) gradient echo (GRE) imaging, (b) inversion recovery 3D GRE imaging, and (c) 2D T2-weighted fast spin-echo imaging. For this purpose, healthy adult volunteers (n = 17; mean age, 34 ± 11 years) and patients with intraocular masses (uveal melanoma, n = 5; mean age, 57 ± 6 years) were investigated. RESULTS: All subjects tolerated all examinations well with no relevant adverse events. The 6-channel coil array supports high-resolution 3D GRE imaging with a spatial resolution as good as 0.2 × 0.2 × 1.0 mm, which facilitates the depiction of anatomical details of the eye. Rather, uniform signal intensity across the eye was found. A mean signal-to-noise ratio of approximately 35 was found for the lens, whereas the vitreous humor showed a signal-to-noise ratio of approximately 30. The lens-vitreous humor contrast-to-noise ratio was 8, which allows good differentiation between the lens and the vitreous compartment. Inversion recovery prepared 3D GRE imaging using a spatial resolution of 0.4 × 0.4 × 1.0 mm was found to be feasible. T2-weighted 2D fast spin-echo imaging with the proposed RF coil afforded a spatial resolution of 0.25 × 0.25 × 0.7 mm. CONCLUSIONS: This work provides valuable information on the feasibility of ophthalmic MRI at 7 T using a dedicated 6-channel transceiver coil array that supports the acquisition of high-contrast, high-spatial resolution images in healthy volunteers and patients with intraocular masses. The results underscore the challenges of ocular imaging at 7 T and demonstrate that these issues can be offset by using tailored RF coil hardware. The benefits of such improvements would be in positive alignment with explorations that are designed to examine the potential of MRI for the assessment of spatial arrangements of the eye segments and their masses with the ultimate goal to provide imaging means for guiding treatment decisions in ophthalmological diseases.


Assuntos
Neoplasias Oculares/diagnóstico , Olho/patologia , Imageamento por Ressonância Magnética/instrumentação , Adulto , Idoso , Desenho de Equipamento , Olho/anatomia & histologia , Estudos de Viabilidade , Feminino , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Valores de Referência , Razão Sinal-Ruído , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...